TRADITIONAL
PLATE EXCHANGER CALCULATION
Water properties are taken at average temperatures. As the hot and cold inlet temperatures are 80 and 20 degrees Centigrade, respectively, the average temperature is 50 degree C. The film correction for the heat transfer coefficient is neglected for the hand calculation. It is small and of opposite influence at each process side.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Now, the overall
heat transfer coefficient is calculated. We have the following
equations:
Because the fluid and the fluid mass flow are identical on both sides, delta_T_mean equals the initial temperature difference (ITD=T_hot,in-T_cold,in) minus the delta_T_fluid, or:
Inserting this into (eq.1), equating (eq.1) and (eq.2), we get:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solving for delta_T_fluid :
delta_T_fluid = 60.0 * 3004.6*400.0 / (3004.6*400.0 + 400.0*4035) = 25.61 [K] Q_fluid = M_flow * Cp * delta_T_fluid = 400.0 * 4035 * 25.61 = 41334540 [W], or 41.33 [MW] This results in: outlet temperature of 80 - 25.61 = 54.39 degree Centigrade (hot side) outlet temperature of 20 - 25.61 = 45.61 degree Centigrade (cold side) The results of AHTL are 55.41 degree C (hot side) 44.64 degree C (cold side) Heat transferred: 41.16 [MW]. The hand calculation is 0.4% in error. It is interesting to inspect the output of AHTL. The effect of varying fluid properties on heat transfer is significant. Overall effects on heat transfer cancel out to great extent. However, the effect on metal temperatures is much greater. The hot inlet side plate temperatures should by at around the average of hot flow inlet- and cold flow outlet temperatures, i.e. 0.5 * (80.0 + 44.64) = 62.32 degree C. Average plate temperature calculated by AHTL at this location is 63.197 degree C. This example is exceedingly simple, but in more complex cases, with phase transitions and for technically difficult problems it pays to have a solution that is as accurate as possible. back |